Search for Higgs Bosons Produced in Association with b-Quarks at CDF

Thomas Wright University of Michigan

Fermilab Joint Experimental-Theoretical Seminar July 8, 2011

Outline

- Overview of the Higgs sector of the MSSM
- Data samples and the CDF detector
- Search for associated Higgs production in the 3b channel
 - Background templates and fitting
 - MSSM interpretation, scenario dependence, and width effects
- Conclusion and outlook

- Results presented today have been submitted to PRD
 - Available at arXiv:1106.4782
 - http://www-cdf.fnal.gov/physics/new/hdg/Results.html

Why Do We Expect a Higgs?

- Standard Model fermion/boson interactions specified by SU(2)_L x U(1)_Y symmetry
- But, fermion and boson mass terms are forbidden by same symmetry!
- Introduce pair of complex scalar fields with a particular shape, and interactions with fermions/bosons
- All compatible with SU(2)_L x U(1)_Y
- Then break the symmetry

$V(\phi)$ $\operatorname{Im}(\phi)$ $\operatorname{Re}(\phi)$

- Excitations away from mimimum
 - Physical Higgs scalar
- Original interactions split
 - VEV terms masses!
 - Interactions with physical Higgs strength proportional to mass

WW scattering in the SM

σ ~ E² → violates unitarity above 1.2 TeV

Physical Higgs has just the right couplings to cancel divergence!

Supersymmetry

- SM particles have supersymmetric partners: differ by 1/2 unit in spin
- SUSY has many attractive properties
 - Cancellation of Higgs mass divergence, coupling unification, etc
 - Lightest neutralino is a dark matter candidate
- Requires larger Higgs sector than the single scalar of the SM
 - Simplest case: Minimal Supersymmetric Standard Model (MSSM)

Higgs in the MSSM

- Instead of one scalar, get five:
 - Three neutral: h, H, A: (generically "φ")
 - Two charged: H⁺, H⁻
- Separate couplings for up-type and down-type fermions
- Properties of the Higgs sector largely determined by two parameters:
 - m_A: mass of pseudoscalar
 - $tan\beta$: ratio of down-type to up-type couplings
- Typically, $m_h < m_A < m_H$, and $m_{H\pm} \sim m_A$
- For tanβ near 1, h is SM-like and light LEP-II limits apply
- Larger tanβ shows more interesting behavior
 - A becomes degenerate with h or H (mass, couplings, etc)
 - Other decouples, SM-like, mass around 120 GeV
 - -A + h/H production controlled by tan β
- In the Standard Model, Higgs cross section is fixed no free parameters
- In MSSM, production of A/h/H depends on $tan\beta$ range of possiblity
 - For the right value of $tan\beta$, could already have discovery potential

5

Higgs at High tanβ

 ϕ_0

Processes involving bottom quarks (down-type) enhanced by $tan^2\beta$

Boost from femtobarns to picobarns

T. Wright

FNAL W&C 7/8/2011

The 3b Channel

- Search for the $bb\phi \rightarrow bbbb$ process
- Less cross section when requiring both b's to be high-p_T
- Look for the Higgs + 1b case
 - Three b-jets with two forming a mass peak

Data Sample

- Similar displaced-track triggering (SVT) as CDF B-physics program
- Results today use all data up to trigger change (2.6/fb)
- Continue to collect data on new triggers will analyze full Run II sample

The CDF II Detector

B-Jet Identification (b-tagging)

- B-hadrons are long-lived search for displaced vertices
- Construct event-by-event primary within beamspot (10-32 μm)
- Fit displaced tracks and cut on L_{xy} significance ($\sigma \sim 200 \, \mu m$)
- Calibrate performance from data (low-p_T lepton samples)
- Charm hadrons have similar tag behavior but lower efficiency

T. Wright FNAL W&C 7/8/2011 10

Fake B-Tags (mistags)

- Fake tags of light-flavor jets can result from poorly-reconstructed tracks or interactions with the detector material
- More tracks in a jet above 1 GeV/c means more chances for something to go wrong fake rate rises dramatically with jet E_T
- Can use "tag mass" to deduce the flavor composition of a sample of tagged jets
 - Mass of the tracks forming the secondary vertex
 - B-hadrons are heavy → will have higher m_{tag} spectrum than charm or light jet fakes

3b Channel Roadmap

- Trigger is two jets and two displaced tracks (no matching)
 - Events are fairly biased even after offline selection
 - Data-driven backgrounds are the natural way to handle this
- Background is QCD multijet production of all possible jet flavors
 - We consider b-jets, c-jets, and "q"-jets (q = light quark or gluon)
- Derive estimates for each flavor combination from the data
 - Use Pythia to check for bias
- Look for an excess in the mass of the two leading jets (m_{12})
- Use tag mass (m_{tag}) information to understand flavor composition
- Perform a two-dimensional fit to the data using these estimates
 - Tag mass information determines background composition
 - Look for Higgs in the m₁₂ distribution

Selection and Acceptance

- Base selection is three of the four leading jets must have $E_T>20$ GeV, $|\eta|<2$, and be b-tagged
- Two lead jets must be b-tagged, have two matched trigger displaced tracks (SVT) between them
 - Either 1+1 or 2+0
- Third or fourth-leading jet must have standard b-tag
- Signal samples are PYTHIA gg→bbH, H→bb
 - Require $p_T>15$ GeV/c, $|\eta|<2$ for at least one of the associated b-quarks
- Discriminating variable is mass of two leading tagged jets m₁₂

Background Model

- Essentially ~100% of background is QCD multijet production
- Most of it is in five components two b's plus b/c/q
- Fractions are from generator-level Pythia samples
 - Do not want to rely on these cross sections
 - Will fit for them in the data
- Shape differences are due to both physics and detector effects
 - Biases from b-tagging
 - Kinematics of heavy quark production processes

jet flavor (12)3	fraction
bbb	0.37
bbc	0.05
bbq	0.10
bcb	0.12
bqb	0.29
other	0.07

Background Strategy - m₁₂

- Use three-jet events with two jets btagged as starting point
- For bbq and bqb it's straightforward
 - Weight events by mistag probability of untagged jet
 - Physics from data, we add tagging bias
- Tag probabilities: functions of jet E_T and number of tracks, derived from large simulated jet samples
- For bbc and bcb, PYTHIA studies show that 'c' events have same kinematics as 'q'
 - Weight by probability to b-tag untagged jet as if it were a charm jet
- Comparing bCb vs bQb we see the effect of the b-tagging bias
- Bias from third-jet b-tag not that important for m₁₂ → combine bbQ/bbC into 'bbX'

Non-bb Subtraction

- Using double-tagged events as an estimate of bb+b/c/q events
- Double-tags contain some non-bb component
- Subtract using 'negative' tags
 - Vertex which is on the opposite side of the beamline compared to the jet direction
 - Often used as an estimate for light-flavor fake tags
- Perform same weighting procedure on events with one or two negative tags, and compute

$$- N_{bb} = N_{++} - \lambda N_{+-} + \lambda^2 N_{--}$$

• The factor λ is the ratio of POS/NEG fake tag rates (1.4)

What about bbb?

- Here we have two options for the starting point
 - Two lead jets b-tagged (bbB)
 - Third jet and either of two lead jets b-tagged (bBb)
- Which one is correct?
- Answer: neither
- The true bbb background has contributions from events where m₁₂ reflects a single bb production pair (bbB), and where the two jets are from different production pairs (bBb)
- We include both cases in the fit

Second Template Axis

- Split events by flavor
- Characteristic m₁₂ spectra
- Second variable to help separate backgrounds from each other, and Higgs+bbb from ones with c/q
- Important categories are:
 - bb + b : bbb, Higgs
 - bb + X : bbc, bbq
 - -bX + b : bcb, bqb
 - Naturally breaks into m₁+m₂
 and m₃
- Pack into 1D so overall templates are only 2D (technical reasons)
- Unstack 3x3 histogram into a 9-bin
 1D histogram "x_{tags}"

Fit Templates

- The bbX events can be separated by third tag mass in x_{tags}
- Two lead jet tag masses separate bbB,bBb from bCb,bQb
- Separation of bCb vs bQb and bbB vs bBb vs Higgs through m₁₂
- Templates are actually 2D histograms in both m_{12} and x_{tags}
 - Fit itself is also 2D
 - Only show projections for clarity

Background-Only Fit

- Total of 11490 events in the data
- Simple template fit with MINUIT, no systematics
- Results in 2.6/fb

component	estimate	N_{fit}	
bbB	1300	1520 ± 540 2620 ± 550	
bBb	2950		
bbX = bbQ + bbC	1350+640 = 1990	990 2210±160	
bCb	1380	1710 ± 630	
bQb	3480	3430 ± 390	

Limits and Systematics

- Modified-frequentist (CL_S) limit calculator based on mclimit_csm
 - Allows inclusion of systematic uncertainties
 - Shape uncertainties on templates through histogram interpolation

source	variation	applies to	type
luminosity	±6%	signal	rate
Monte Carlo statistics	±2%	signal	rate
selection efficiency	$\pm 5\%$ per jet	signal	rate
PDFs	$^{+3.5}_{-4.5}\%$	signal	rate
jet energy scale	$\pm 4.5\%$	signal	rate/shape
$b/c \ m_{tag}$	3%	signal/backgrounds	shape
mistag m_{tag}	3%	backgrounds	shape
mistag asymmetry factor λ	1.4 ± 0.2	backgrounds	rate/shape
heavy flavor fractions	±50%	backgrounds	rate

σ x BR Limits

- Maximum deviation from expectation at 150 GeV/c²
- Including the trials factor, $1-CL_b = 2.5\% (1.9\sigma)$
- For just the 150 point alone, $1-CL_b = 0.23\%$ (2.8 σ)
- Corresponds to σ x BR \sim 15 pb
- Note: these limits are for a resonance much narrower than the experimental resolution!
 - SM Higgs, new scalars, etc
- MSSM Higgs in high-tanβ scenarios not generally narrow

Fit Including Signal

- Repeat simple fit, using backgrounds plus a Higgs signal component ($m_H = 150 \text{ GeV/c}^2$)
- Results in 2.6/fb

component	N_{fit}
bbB	2280±600
bBb	1490±670
bbX	2150±160
bCb	2050±630
bQb	3100±400
Higgs	420±130

Current ox BR Constraints

- Do have a similar analysis (J. Hays W&C 11/12/2010)
 - No excess at 150 GeV/c²
 - Different cross section definitions (Do's is a factor ~2 larger)
- Work is in progress to combine the two results

MSSM tanβ Limits

- At tree level, $\sigma \times BR = 2\sigma_{SM} \tan^2 \beta \times 90\%$
- Get σ_{SM} from MCFM
- Factor of 2 from h/H degeneracy
- $\bullet \quad BR = 90\%$
- For tanβ limits, must include uncertainties on the predicted cross section
 - PDFs:
 - was 4% on the acceptance
 - change to uncertainty on the total event yield
 - 8%(23%) for $m_H = 90(210)$
 - Additional variation for scale dependence of NLO calculation

Scenario Dependence

- Higgs properties are largely, but not completely, determined by m_A and $tan\beta$
- Loop corrections introduce dependence on other SUSY parameters
 - M. Carena et al., Eur.Phys.J. C45 (2006)
 797-814 (hep-ph/0511023)

$$\sigma(b\bar{b} \to A) \times BR(A \to b\bar{b}) \cong \sigma(b\bar{b} \to A)_{SM} \times \frac{\tan \beta^{2}}{(1 + \Delta_{b})^{2}} \times \frac{9}{(1 + \Delta_{b})^{2} + 9}$$

$$\sigma(b\bar{b}, gg \to A) \times BR(A \to \tau\tau) \cong \sigma(b\bar{b}, gg \to A)_{SM} \times \frac{\tan \beta^{2}}{(1 + \Delta_{b})^{2} + 9}$$

- Δ_b is a function of SUSY parameters
 - Δ_b proportional to μ x tanβ (sign of μ matters)
- Use two "benchmark" scenarios
- For $\tan \beta = 50$, $\mu = -200 \text{ GeV}$
 - m_h^{max} : $\Delta_h = -0.21$
 - tree-level: $\Delta_b = 0$

Fit Templates with Width

- Can't turn up cross section without increasing Higgs width
- Natural width eventually becomes comparable to experimental resolution
- Fit templates broaden and shift towards lower m₁₂ because of falling cross section

T. Wright FNAL W&C 7/8/2011 27

Benchmark tanß Limits with Width

- Upper plot is for the tree-level case $(\Delta_b=0)$ and with the width effect included
- Lower plot is for m_h^{max} scenario with negative μ and the width effect
 - Enhanced signal production improves the limits
 - Effect is greatest at large tanβ because $\Delta_b \sim \tan \beta$
- With enough data the width effect would eventually die out
 - Sensitivity to smaller cross sections means we probe narrower Higgs regime
 - Will see what we get with the full Run II sample

Current MSSM Constraints

T. Wright FNAL W&C 7/8/2011 29

Summary and Outlook

- CDF has updated MSSM Higgs results in the 3b channel
 - Submitted for publication in PRD (arXiv:1106:4782)
- Analyzed all data taken with the original b-jets trigger (2.6/fb)
 - Still a considerable amount remaining
 - Will update with full Run II data sample
- No significant excess observed, $\sim 2\sigma$ bump at 150 GeV/c²
- Analysis is adaptable to other signal models besides MSSM Higgs
 - Ex: color octet scalars (B. Dobrescu's W&C 10/15/2010)

- Paper, plots, etc available at
 - http://www-cdf.fnal.gov/physics/new/hdg/Results.html

Backup Material

QCD Heavy Flavor Production

T. Wright FNAL W&C 7/8/2011 32